Workshop
Harmonic and anharmonic oscillations
studied with CBL and Graphic Calculators
Giacomo Torzo
INFM, CNR and Physics Dept. of Padova University
Giorgio Delfitto
Physics Dept. of Padova University
Barbara Pecori
Physics Dept. of Bologna University
Mechanic oscillating systems on-line
Using on-line apparatuses (sensors + interface + calculator) to study oscillatory motions may be very useful in the physics laboratory because the system evolutionin time becomes directly accessible.
Plots of position, velocity and acceleration vs. time allow an immediate evaluation of the essential characteristics of the observed motion.
Also the experimental investigation within less common graphic representations (velocity/position, acceleration/position, force/acceleration, force/position …) may offer precious hints for a deeper understanding of the studied phenomena.
To illustrate the potentialities the on-line experiments, we will show several oscillating systems: some of them are normally part of introductory courses in mechanics, while others are less commonly performed because they are strongly anharmonic.
A "pocket-size" on-line apparatus
Using this simple & cheap on-line apparatus, many experiments on oscillations can be easily performed : Mass-spring oscillator, Pendulum, Atwood oscillator, Bouncing ball, Cart on incline, Galileo oscillator, Yo-yo (or Maxwell wheel), See-Saw on round or square pivot…
The majority of these phenomena are intrinsically anharmonic motions, as most of the ordinary-life mechanical oscillations. This is due to the fact that usually the restoring force is produced by some component of the gravity field, which is constant.
In some cases a quasi-harmonic motion may be obtained by choosing a proper system geometry (pendulum) and small departures from equilibrium position.
Intrinsically harmonic motion is produced only by a restoring force which is linearly dependent on the displacement, as in the case of mass-spring oscillator, or of the Atwood oscillator (when the immersed body has uniform cross section).